News Story
Innovate the Future Challenge Grand Prize Goes to Aerospace Engineering!

Benedict's Vertical Axis Micro Wind Turbine
Benedict’s winning entry was entitled “Revolutionary Vertical Axis Micro Wind Turbine with Dynamic Blade Pitching for Urban Environments.” This technology involves an efficient small scale (diameter and height of 2 meters, 1–2 kW range), stand-alone, compact, variable-pitch, vertical axis cycloidal wind turbine design. A key advantage, demonstrated via experiment, is that this turbine is self-starting at speeds as low as 3.3 mph (1.5 m/s), can capture energy regardless of fluctuations in wind direction, and is highly efficient even at low tip speed (ratio of tip speed to wind speed). This wind turbine design results from eight years of intensive research in cycloidal-rotor design, development, and testing led by Benedict in the Alfred Gessow Rotorcraft Center. An extensive research program of wind tunnel testing and simulations via computational fluid dynamics clearly shows the potential of this cycloidal wind turbine to maximize energy capture at low wind speeds. Envisioned are applications involving small roof-top farms of such micro wind turbines that could be the solution for efficient wind power generation in urban environments, where energy needs are very high and wind-conditions are extremely unpredictable.
Published December 7, 2012